NEURAL NETWORK MODEL FOR DIAGNOSING MYOCARDIAL INFARCTION

Body surface potential mapping (BSPM) is a non-invasive and effective method for diagnosing coronary heart disease (CHD) and acute myocardial infarction (AMI). However, most existing systems of BSPM are unable to create standard diagnostic criteria. Aim. To develop the neural network model (NNM) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rossiĭskiĭ kardiologicheskiĭ zhurnal 2012-12 (6), p.51-54
Hauptverfasser: B. I. Zagidullin, I. A. Nagaev, N. Sh. Zagidullin, Sh. Z. Zagidullin
Format: Artikel
Sprache:rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Body surface potential mapping (BSPM) is a non-invasive and effective method for diagnosing coronary heart disease (CHD) and acute myocardial infarction (AMI). However, most existing systems of BSPM are unable to create standard diagnostic criteria. Aim. To develop the neural network model (NNM) for diagnosing Q-wave AMI and to assess the model effectiveness. Material and methods. The BSPM method in 90 leads was used in 96 controls, 35 patients with anterior Q-wave AMI, 43 with posterior Q-wave AMI, 14 with inferior Q-wave AMI, and 21 with lateral Q-wave AMI. The input NNM layer was decomposed into five subsets corresponding to horizontal levels of registered signals, using amplitudes of Q, R, S, and T waves and the ST segment. The output layer produced the probability of the norm (controls) and different AMI locations. Results. Exploring the NNM performance in controls and AMI patients, sensitivity of 100% and specificity of 97,4% was observed. Sensitivity reached 100% for anterior Q-wave AMI, 94,4% for posterior Q-wave AMI, 85,7% for inferior Q-wave AMI, and 83,3% for lateral Q-wave AMI. Conclusion. Our data have demonstrated the effectiveness of NNM in AMI diagnostics.
ISSN:1560-4071
2618-7620