Relative Gorenstein Dimensions over Triangular Matrix Rings
Let A and B be rings, U a (B,A)-bimodule, and T=A0UB the triangular matrix ring. In this paper, several notions in relative Gorenstein algebra over a triangular matrix ring are investigated. We first study how to construct w-tilting (tilting, semidualizing) over T using the corresponding ones over A...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2021-11, Vol.9 (21), p.2676 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A and B be rings, U a (B,A)-bimodule, and T=A0UB the triangular matrix ring. In this paper, several notions in relative Gorenstein algebra over a triangular matrix ring are investigated. We first study how to construct w-tilting (tilting, semidualizing) over T using the corresponding ones over A and B. We show that when U is relative (weakly) compatible, we are able to describe the structure of GC-projective modules over T. As an application, we study when a morphism in T-Mod is a special GCP(T)-precover and when the class GCP(T) is a special precovering class. In addition, we study the relative global dimension of T. In some cases, we show that it can be computed from the relative global dimensions of A and B. We end the paper with a counterexample to a result that characterizes when a T-module has a finite projective dimension. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9212676 |