First Integral Technique for Finding Exact Solutions of Higher Dimensional Mathematical Physics Models

In this work, we establish the exact solutions of some mathematical physics models. The first integral method (FIM) is extended to find the explicit exact solutions of high-dimensional nonlinear partial differential equations (PDEs). The considered models are: the space-time modified regularized lon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2019-06, Vol.11 (6), p.783
Hauptverfasser: Javeed, Shumaila, Riaz, Sidra, Saleem Alimgeer, Khurram, Atif, M., Hanif, Atif, Baleanu, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we establish the exact solutions of some mathematical physics models. The first integral method (FIM) is extended to find the explicit exact solutions of high-dimensional nonlinear partial differential equations (PDEs). The considered models are: the space-time modified regularized long wave (mRLW) equation, the (1+2) dimensional space-time potential Kadomtsev Petviashvili (pKP) equation and the (1+2) dimensional space-time coupled dispersive long wave (DLW) system. FIM is a powerful mathematical tool that can be used to obtain the exact solutions of many non-linear PDEs.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym11060783