Double homotopy Cohen-Macaulayness for the poset of injective words and the classical NC-partition lattice

In this paper we study topological properties of the poset of injective words and the lattice of classical non-crossing partitions. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This extends the well-known result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2011-01, Vol.DMTCS Proceedings vol. AO,... (Proceedings), p.575-586
Hauptverfasser: Kallipoliti, Myrto, Kubitzke, Martina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study topological properties of the poset of injective words and the lattice of classical non-crossing partitions. Specifically, it is shown that after the removal of the bottom and top elements (if existent) these posets are doubly Cohen-Macaulay. This extends the well-known result that those posets are shellable. Both results rely on a new poset fiber theorem, for doubly homotopy Cohen-Macaulay posets, which can be considered as an extension of the classical poset fiber theorem for homotopy Cohen-Macaulay posets. Dans cet article, nous étudions certaines propriétés topologiques du poset des mots injectifs et du treillis des partitions non-croisées classiques. Plus précisément, nous montrons qu'après suppression des plus petit et plus grand élément (s'ils existent), ces posets sont doublement Cohen-Macaulay. C'est une extension du fait bien connu que ces deux posets sont épluchables ("shellable''). Ces deux résultats reposent sur un nouveau théorème poset-fibre pour les posets doublement homotopiquement Cohen-Macaulay, que l'on peut voir comme extension du théorème poset-fibre classique pour les posets homotopiquement Cohen-Macaulay.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.2935