Parasitic Reflection Eliminating for Planar Elements Based on Multi-Frequency Phase-Shifting in Phase Measuring Deflectometry
Phase measuring deflectometry (PMD) stands as an extremely important technique for specular surface measurement. However, the parasitic reflection from the rear surface poses a challenge for PMD. To solve this problem, this paper proposes an effective method based on multi-frequency and phase-shifti...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-02, Vol.24 (4), p.1239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phase measuring deflectometry (PMD) stands as an extremely important technique for specular surface measurement. However, the parasitic reflection from the rear surface poses a challenge for PMD. To solve this problem, this paper proposes an effective method based on multi-frequency and phase-shifting to search for the correct phase. Firstly, the relationship between the phase error and fringe frequency is adequately investigated. Subsequently, an auxiliary function is established to find the special frequency at which the phase error is zero theoretically and the unwrapped phase is the phase of the top surface exactly. Then, the shape of the top surface can be reconstructed correctly. A standard plane element with a thickness of 40 mm and a flat glass with 19 mm were measured. The experimental results verify the feasibility of the proposed method. Considering the result of the interferometer as a reference, the RMSE of the error map is up to 20 nm for the standard plane element. The experimental results demonstrate that the proposed method can successfully untangle the superposed reflections and reliably reconstruct the top surface of the object under test. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24041239 |