Extremely low-frequency pulses of faint magnetic field induce mitophagy to rejuvenate mitochondria

Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have been scarcely reported. Here we show that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2022-05, Vol.5 (1), p.453-453, Article 453
Hauptverfasser: Toda, Takuro, Ito, Mikako, Takeda, Jun-ichi, Masuda, Akio, Mino, Hiroyuki, Hattori, Nobutaka, Mohri, Kaneo, Ohno, Kinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humans are frequently exposed to time-varying and static weak magnetic fields (WMF). However, the effects of faint magnetic fields, weaker than the geomagnetic field, have been scarcely reported. Here we show that extremely low-frequency (ELF)-WMF, comprised of serial pulses of 10 µT intensity at 1–8 Hz, which is three or more times weaker than the geomagnetic field, reduces mitochondrial mass to 70% and the mitochondrial electron transport chain (ETC) complex II activity to 88%. Chemical inhibition of electron flux through the mitochondrial ETC complex II nullifies the effect of ELF-WMF. Suppression of ETC complex II subsequently induces mitophagy by translocating parkin and PINK1 to the mitochondria and by recruiting LC3-II. Thereafter, mitophagy induces PGC-1α-mediated mitochondrial biogenesis to rejuvenate mitochondria. The lack of PINK1 negates the effect of ELF-WMF. Thus, ELF-WMF may be applicable for the treatment of human diseases that exhibit compromised mitochondrial homeostasis, such as Parkinson’s disease. The effect of extremely low-frequency pulses of faint magnetic field on mitochondria is investigated, where it led to reduced mitochondrial mass, membrane potential and electron transport chain activity, and induced mitophagy.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-022-03389-7