Carbon Nanodots Attenuate Lipid Peroxidation in the LDL Receptor Knockout Mouse Brain
Abnormal cholesterol metabolism can lead to oxidative stress in the brain. Low-density lipoprotein receptor (LDLr) knockout mice are models for studying altered cholesterol metabolism and oxidative stress onset in the brain. Carbon nanodots are a new class of carbon nanomaterials that possess antiox...
Gespeichert in:
Veröffentlicht in: | Antioxidants 2023-05, Vol.12 (5), p.1081 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abnormal cholesterol metabolism can lead to oxidative stress in the brain. Low-density lipoprotein receptor (LDLr) knockout mice are models for studying altered cholesterol metabolism and oxidative stress onset in the brain. Carbon nanodots are a new class of carbon nanomaterials that possess antioxidant properties. The goal of our study was to evaluate the effectiveness of carbon nanodots in preventing brain lipid peroxidation. LDLr knockout mice and wild-type C57BL/6J mice were treated with saline or 2.5 mg/kg bw of carbon nanodots for a 16-week period. Brains were removed and dissected into the cortex, midbrain, and striatum. We measured lipid peroxidation in the mouse brain tissues using the Thiobarbituric Acid Reactive Substances Assay and iron and copper concentrations using Graphite Furnace Atomic Absorption Spectroscopy. We focused on iron and copper due to their association with oxidative stress. Iron concentrations were significantly elevated in the midbrain and striatum of the LDLr knockout mice compared to the C57BL/6J mice, whereas lipid peroxidation was greatest in the midbrain and cortex of the LDLr knockout mice. Treatment with carbon nanodots in the LDLr knockout mice attenuated both the rise in iron and lipid peroxidation, but they had no negative effect in the C57BL/6J mice, indicating the anti-oxidative stress properties of carbon nanodots. We also assessed locomotor and anxiety-like behaviors as functional indicators of lipid peroxidation and found that treatment with carbon nanodots prevented the anxiety-like behaviors displayed by the LDLr knockout mice. Overall, our results show that carbon nanodots are safe and may be an effective nanomaterial for combating the harmful effects caused by lipid peroxidation. |
---|---|
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox12051081 |