Induction of Non-Canonical Ferroptosis by Targeting Clusters Suppresses Glioblastoma
Glioblastoma multiforme (GBM) is the most aggressive brain tumor. There is a pressing need to develop novel treatment strategies due to the poor targeting effect of current therapeutics. Here, a gold cluster coated with optimized GBM-targeting peptide is engineered, namely NA. NA can efficiently tar...
Gespeichert in:
Veröffentlicht in: | Pharmaceutics 2024-09, Vol.16 (9), p.1205 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glioblastoma multiforme (GBM) is the most aggressive brain tumor. There is a pressing need to develop novel treatment strategies due to the poor targeting effect of current therapeutics. Here, a gold cluster coated with optimized GBM-targeting peptide is engineered, namely NA. NA can efficiently target GBM both in vitro and in vivo. Interestingly, the uptake of NA significantly sensitizes GBM cells to ferroptosis, a form of programmed cell death that can bypass the tumor resistance to apoptosis. This effect is exerted through regulating the HO-1-dependent iron ion metabolism, which is the non-canonical pathway of ferroptosis. The combined treatment of a ferroptosis inducer and NA profoundly inhibited tumor growth in both the GBM spheroid model and a syngeneic mouse model with enhanced ferroptosis levels and excellent biosafety. Importantly, the infiltration of tumoricidal lymphocytes is also significantly increased within tumor. Therefore, NA presents a potential novel nanomaterial-based strategy for GBM treatment. |
---|---|
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics16091205 |