Physicomechanical Nature of Acoustic Emission Preceding Wire Breakage during Wire Electrical Discharge Machining (WEDM) of Advanced Cutting Tool Materials

The field of applied wire electrical discharge machining (WEDM) is rapidly expanding due to rapidly increasing demand for parts made of hard-to-machine materials. Hard alloys composed of WC, TiC and Co are advanced cutting materials widely used in industry due to the excellent combination of hardnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-11, Vol.11 (11), p.1865
Hauptverfasser: Grigoriev, Sergey N., Pivkin, Petr M., Kozochkin, Mikhail P., Volosova, Marina A., Okunkova, Anna A., Porvatov, Artur N., Zelensky, Alexander A., Nadykto, Alexey B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The field of applied wire electrical discharge machining (WEDM) is rapidly expanding due to rapidly increasing demand for parts made of hard-to-machine materials. Hard alloys composed of WC, TiC and Co are advanced cutting materials widely used in industry due to the excellent combination of hardness and toughness, providing them obvious advantages over other cutting materials, such as cubic boron nitride, ceramics, diamond or high-speed steel. A rational choice of the WEDM modes is extremely important to ensure the dimensional quality of the manufactured cutting inserts, while roughness of the machined surface on the cutting edge is of great importance with regards to the application of wear-resistant coatings, which increases tool life. However, the stock control systems of CNC WEDM machines, which are based on assessment of electrical parameters such as amperage and voltage, are unable to timely detect conditions at which a threat of wire breakage appears and to prevent wire breakage by stopping the electrode feed and flushing out the interelectrode gap (IEG) when hard alloys with high heat resistance and low heat conductivity, such as WC, TiC and Co composites, are being machined, due to the inability to distinguish the working pulses and pulses that expend a part of their energy heating and removing electroerosion products contaminating the working zone. In this paper, the physicomechanical nature of the WEDM of hard alloy WC 88% + TiC 6% + Co 6% was investigated, and the possibility of using acoustic emission parameters for controlling WEDM stability and productivity were explored. Acoustic emission (AE) signals were recorded in octave bands with central frequencies of 1–3 and 10–20 kHz. It was found that at the initial moment, when the dielectric fluid is virtually free of contaminants, the amplitude of the high-frequency component of the VA signal has its highest value. However, as the contamination of the working zone by electroerosion products increases, the amplitude of the high-frequency component of the AE signal decreases while the low-frequency component increases in an octave of 1–3 kHz. By the time of the wire breakage, the amplitude of the high-frequency component in the octave of 10–20 kHz had reduced by more than 5-fold, the amplitude of the low-frequency component in the octave of 1–3 kHz had increased by more than 2-fold, and their ratio, coefficient Kf, decreased by 12-fold. To evaluate the efficiency of Kf as a diagnostic parameter,
ISSN:2075-4701
2075-4701
DOI:10.3390/met11111865