HVOF deposition characteristics and corrosion resistance of 316 stainless steel coating on magnesium alloy surface

The 316 stainless steel coatings with different thicknesses (SSC2, SSC4, SSC7, SSC10) were deposited on the magnesium alloy surface by using the HVOF method. The microstructures, deposition characteristics, residual stresses and immersion corrosion characteristics of the coating were investigated. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cai liao gong cheng = Journal of materials engineering 2024-11, Vol.52 (11), p.175-185
Hauptverfasser: Li, Xuqiang, Li, Wensheng, Zhang, Zheyun, Cui, Shuai, Shao, Lei, Zhai, Haimin
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 316 stainless steel coatings with different thicknesses (SSC2, SSC4, SSC7, SSC10) were deposited on the magnesium alloy surface by using the HVOF method. The microstructures, deposition characteristics, residual stresses and immersion corrosion characteristics of the coating were investigated. The results reveal that due to the lower melting point and hardness of magnesium alloy, spray particles are prone to invade the substrate and melt its surface, causing particle escape or splashing, resulting in lower deposition efficiency; after depositing thinner coatings (SSC2 and SSC4), the escape or splashing behavior of deposited particles reduces significantly, and the deposition efficiency increases; when the deposition thickness increases to SSC7 or above, the surface temperature of the deposition increases, particle splashing gradually increases, and the porosity and oxide content of the coating surface increase. Furthermore, as the coating thickness increases, the residual compressive stress of the coating
ISSN:1001-4381
DOI:10.11868/j.issn.1001-4381.2023.000235