Exploring the role of hyperons in high density matter in the Quark-Meson-Coupling model

Microscopic composition and properties of matter at super-saturation densities have been a subject of intense investigations for decades. Experimental and observational data and fundamental laws of physics indicate that heavy strange baryons and mesons are essential components of the matter. The Qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2022, Vol.271, p.9003
1. Verfasser: Stone, Jirina R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microscopic composition and properties of matter at super-saturation densities have been a subject of intense investigations for decades. Experimental and observational data and fundamental laws of physics indicate that heavy strange baryons and mesons are essential components of the matter. The Quark-Meson-Coupling-Model (QMC) is well suited for such a study. The model is based on interaction between quarks in individual baryons instead between the baryons as entities without internal structure. This approach significantly increases transparency and reduces the number of variable parameters of the model, thus offering deeper insight into the physics of high density hadronic matter. In this contribution, we review the effect of hyperons on neutron star (NS) properties, the speed of sound and the symmetry energy, both at zero and finite temperature. The QMC results are contrasted with the outcome of the traditional relativistic mean field DD2Y model. The (lack of) the so-called ‘hyperon puzzle’ in both models is discussed.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202227109003