Quantum Rabi dynamics of trapped atoms far in the deep strong coupling regime

The coupling of a two-level system with an electromagnetic field, whose fully quantized version is the quantum Rabi model, is among the central topics of quantum physics. When the coupling strength becomes large enough that the field mode frequency is reached, the deep strong coupling regime is appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-02, Vol.14 (1), p.954-954, Article 954
Hauptverfasser: Koch, Johannes, Hunanyan, Geram R., Ockenfels, Till, Rico, Enrique, Solano, Enrique, Weitz, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The coupling of a two-level system with an electromagnetic field, whose fully quantized version is the quantum Rabi model, is among the central topics of quantum physics. When the coupling strength becomes large enough that the field mode frequency is reached, the deep strong coupling regime is approached, and excitations can be created from the vacuum. Here we demonstrate a periodic variant of the quantum Rabi model in which the two-level system is encoded in the Bloch band structure of cold rubidium atoms in optical potentials. With this method we achieve a Rabi coupling strength of 6.5 times the field mode frequency, which is far in the deep strong coupling regime, and observe a subcycle timescale raise in bosonic field mode excitations. In a measurement recorded in the basis of the coupling term of the quantum Rabi Hamiltonian, a freezing of dynamics is revealed for small frequency splittings of the two-level system, as expected when the coupling term dominates over all other energy scales, and a revival for larger splittings. Our work demonstrates a route to realize quantum-engineering applications in yet unexplored parameter regimes. Light interaction with atoms depends on the strength of the light-matter coupling and the energy splitting of the modes involved. Here the authors study of quantum Rabi dynamics in a deep strong coupling regime by using a cloud of cold rubidium atoms.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-36611-z