Thermodynamic performance of a cryogenic energy storage system based on natural gas liquefaction

Cryogenic energy storage (CES) is a viable method for grid-scale electrical energy storage. Considering the high energy density and mature application of liquefied natural gas (LNG), we proposed an LNG cryogenic energy storage (LNGES) system. A steady-state process model of the LNGES system was esta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy Storage and Saving 2024-03, Vol.3 (1), p.23-29
Hauptverfasser: Qin, Xiaoqiao, Tan, Hongbo, Shen, Wei, Wen, Na, Sun, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryogenic energy storage (CES) is a viable method for grid-scale electrical energy storage. Considering the high energy density and mature application of liquefied natural gas (LNG), we proposed an LNG cryogenic energy storage (LNGES) system. A steady-state process model of the LNGES system was established using Aspen HYSYS. The effects of the natural gas composition and key operating parameters such as the charging pressure, discharging pressure, throttling temperature, and liquid storage pressure on the system performance were investigated. A multi-parameter genetic algorithm model built using the MATLAB software was used to optimize the LNGES system to optimize the round-trip efficiency (RTE). Then, an exergy analysis of the optimal configuration was conducted. The results suggested that the LNGES system could achieve optimal RTE and exergy efficiency values of 60.14% and 71.64%, respectively. Exergy destruction mainly occurred during the compression, throttling, expansion, and heat exchange. The proposed LNGES system could be a promising candidate for the large-scale application of CES technology in power grids and gas networks.
ISSN:2772-6835
2772-6835
DOI:10.1016/j.enss.2023.10.001