Structural basis for UFM1 transfer from UBA5 to UFC1

Ufmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear. Here, we present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-09, Vol.12 (1), p.5708-5708, Article 5708
Hauptverfasser: Kumar, Manoj, Padala, Prasanth, Fahoum, Jamal, Hassouna, Fouad, Tsaban, Tomer, Zoltsman, Guy, Banerjee, Sayanika, Cohen-Kfir, Einav, Dessau, Moshe, Rosenzweig, Rina, Isupov, Michail N., Schueler-Furman, Ora, Wiener, Reuven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ufmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear. Here, we present the crystal structure of UFC1 bound to the C-terminus of UBA5, revealing how UBA5 interacts with UFC1 via a short linear sequence, not observed in other E1-E2 complexes. We find that UBA5 has a region outside the adenylation domain that is dispensable for UFC1 binding but critical for UFM1 transfer. This region moves next to UFC1’s active site Cys and compensates for a missing loop in UFC1, which exists in other E2s and is needed for the transfer. Overall, our findings advance the understanding of UFM1’s conjugation machinery and may serve as a basis for the development of ufmylation inhibitors. Ufmylation is a well-established ubiquitin-like protein modification, but its mechanism is largely unclear. Here, the authors present a crystal structure of the ufmylation-specific E1-E2 complex, revealing differences to the ubiquitination machinery and mechanistic details of the ufmylation process.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25994-6