Crashworthiness performance of stiffened bottom tank structure subjected to impact loading conditions: Ship-rock interaction

Shipping time, cargo handling and quality as well as operational cost are main aspects of success in trading and shipping, which leads to high demand for ship safety. During freight shipping is conducted for various cargoes, the ship structure is subjected to numbers of loads, which several of them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Curved and layered structures 2019-01, Vol.6 (1), p.245-258
Hauptverfasser: Rio Prabowo, Aditya, Sohn, Jung Min, Putranto, Teguh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shipping time, cargo handling and quality as well as operational cost are main aspects of success in trading and shipping, which leads to high demand for ship safety. During freight shipping is conducted for various cargoes, the ship structure is subjected to numbers of loads, which several of them have been predicted during ship design. Nevertheless, incidental type in form of impact load can deliver massive blow to ship safety and cause immense loss. This phenomenon may be worse than initial condition if structure of chemical-oil carrier experiences impact, which possibly evokes environmental damage to maritime territory. This work is addressed to assess crashworthiness performance of structural part, bottom tank of chemical carrier. This part is one of center point of oil spill during occurrence of the impact load. The loading conditions are defined as configuration of interaction between ship structure and rock when the ship is stranded on shallow water. A series of data observations produced by finite element analysis (FEA) provide a prediction regarding local member’s motions during the rock breaches lower parts of the bottom tank. Consequences of the plate towards failure are quantified to obtain effect of the selected impact loading conditions to directly involved (main) member and other affected local member.
ISSN:2353-7396
2353-7396
DOI:10.1515/cls-2019-0016