Liftings of metallic structures to tangent bundles of order $ r
It is well known that the prolongation of an almost complex structure from a manifold $ M $ to the tangent bundle of order $ r $ on $ M $ is also an almost complex structure if it is integrable. The general quadratic structure $ F^2 = \alpha F+\beta I $ is a generalization of an almost complex struc...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2022-01, Vol.7 (5), p.7888-7897 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that the prolongation of an almost complex structure from a manifold $ M $ to the tangent bundle of order $ r $ on $ M $ is also an almost complex structure if it is integrable. The general quadratic structure $ F^2 = \alpha F+\beta I $ is a generalization of an almost complex structure where $ \alpha = 0, \; \beta = -1. $ The purpose of this paper is to characterize a metallic structure defined by the general quadratic structure $ F^2 = \alpha F+\beta I, \; \alpha, \beta\in \mathbb{N} $, where $ \mathbb{N} $ is the set of natural numbers. We show that the $ r $-lift of the metallic structure $ F $ in the tangent bundle of order $ r $ is also a metallic structure. Furthermore, we deduce a theorem on the projection tensor in the tangent bundle of order $ r $. Moreover, prolongations of $ G $-structures immersed in the metallic structure to the tangent bundle of order $ r $ and 2 are discussed. Finally, we construct examples of metallic structures that admit an almost para contact structure on the tangent bundle of order 3 and 4. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022441 |