Computational ligand design in enantio- and diastereoselective ynamide [5+2] cycloisomerization

Transition metals can catalyse the stereoselective synthesis of cyclic organic molecules in a highly atom-efficient process called cycloisomerization. Many diastereoselective (substrate stereocontrol), and enantioselective (catalyst stereocontrol) cycloisomerizations have been developed. However, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-01, Vol.7 (1), p.10109-10109, Article 10109
Hauptverfasser: Straker, R. N., Peng, Q., Mekareeya, A., Paton, R. S., Anderson, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metals can catalyse the stereoselective synthesis of cyclic organic molecules in a highly atom-efficient process called cycloisomerization. Many diastereoselective (substrate stereocontrol), and enantioselective (catalyst stereocontrol) cycloisomerizations have been developed. However, asymmetric cycloisomerizations where a chiral catalyst specifies the stereochemical outcome of the cyclization of a single enantiomer substrate—regardless of its inherent preference—are unknown. Here we show how a combined theoretical and experimental approach enables the design of a highly reactive rhodium catalyst for the stereoselective cycloisomerization of ynamide-vinylcyclopropanes to [5.3.0]-azabicycles. We first establish highly diastereoselective cycloisomerizations using an achiral catalyst, and then explore phosphoramidite-complexed rhodium catalysts in the enantioselective variant, where theoretical investigations uncover an unexpected reaction pathway in which the electronic structure of the phosphoramidite dramatically influences reaction rate and enantioselectivity. A marked enhancement of both is observed using the optimal theory-designed ligand, which enables double stereodifferentiating cycloisomerizations in both matched and mismatched catalyst–substrate settings. Using a chiral catalyst to override the innate stereochemical outcome of a diastereoselective process is a challenging task. Here, the authors use theory and experiment to develop a cycloisomerization where the enantioselectivity is driven by the electronic nature of the ligand regardless of the reaction's inherent diastereoselectivity.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10109