Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability

Molybdenum disulfide is naturally inert for alkaline hydrogen evolution catalysis, due to its unfavorable water adsorption and dissociation feature originated from the unsuitable orbital orientation. Herein, we successfully endow molybdenum disulfide with exceptional alkaline hydrogen evolution capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-03, Vol.10 (1), p.1217-1217, Article 1217
Hauptverfasser: Zang, Yipeng, Niu, Shuwen, Wu, Yishang, Zheng, Xusheng, Cai, Jinyan, Ye, Jian, Xie, Yufang, Liu, Yun, Zhou, Jianbin, Zhu, Junfa, Liu, Xiaojing, Wang, Gongming, Qian, Yitai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molybdenum disulfide is naturally inert for alkaline hydrogen evolution catalysis, due to its unfavorable water adsorption and dissociation feature originated from the unsuitable orbital orientation. Herein, we successfully endow molybdenum disulfide with exceptional alkaline hydrogen evolution capability by carbon-induced orbital modulation. The prepared carbon doped molybdenum disulfide displays an unprecedented overpotential of 45 mV at 10 mA cm −2 , which is substantially lower than 228 mV of the molybdenum disulfide and also represents the best alkaline hydrogen evolution catalytic activity among the ever-reported molybdenum disulfide catalysts. Fine structural analysis indicates the electronic and coordination structures of molybdenum disulfide have been significantly changed with carbon incorporation. Moreover, theoretical calculation further reveals carbon doping could create empty 2p orbitals perpendicular to the basal plane, enabling energetically favorable water adsorption and dissociation. The concept of orbital modulation could offer a unique approach for the rational design of hydrogen evolution catalysts and beyond. Technologies allowing for sustainable hydrogen production will contribute to the decarbonization of the future energy supply. Here the authors report that carbon induced orbital modulation can facilitate the otherwise inert MoS 2 electrocatalyst superior alkaline hydrogen evolution reactivity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09210-0