Design of a Low-Cost Diffuse Optical Mammography System for Biomedical Image Processing in Breast Cancer Diagnosis
Worldwide, breast cancer is the most common type of cancer that mainly affects women. Several diagnosis techniques based on optical instrumentation and image analysis have been developed, and these are commonly used in conjunction with conventional diagnostic devices such as mammographs, ultrasound,...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-04, Vol.23 (9), p.4390 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Worldwide, breast cancer is the most common type of cancer that mainly affects women. Several diagnosis techniques based on optical instrumentation and image analysis have been developed, and these are commonly used in conjunction with conventional diagnostic devices such as mammographs, ultrasound, and magnetic resonance imaging of the breast. The cost of using these instruments is increasing, and developing countries, whose deaths indices due to breast cancer are high, cannot access conventional diagnostic methods and have even less access to newer techniques. Other studies, based on the analysis of images acquired by traditional methods, require high resolutions and knowledge of the origin of the captures in order to avoid errors. For this reason, the design of a low-cost diffuse optical mammography system for biomedical image processing in breast cancer diagnosis is presented. The system combines the acquisition of breast tissue photographs, diffuse optical reflectance (as a biophotonics technique), and the processing of digital images for the study and diagnosis of breast cancer. The system was developed in the form of a medical examination table with a 638 nm red-light source, using light-emitted diode technology (LED) and a low-cost web camera for the acquisition of breast tissue images. The system is automatic, and its control, through a graphical user interface (GUI), saves costs and allows for the subsequent analysis of images using a digital image-processing algorithm. The results obtained allow for the possibility of planning in vivo measurements. In addition, the acquisition of images every 30° around the breast tissue could be used in future research in order to perform a three-dimensional (3D) reconstruction and an analysis of the captures through deep learning techniques. These could be combined with virtual, augmented, or mixed reality environments to predict the position of tumors, increase the likelihood of a correct medical diagnosis, and develop a training system for specialists. Furthermore, the system allows for the possibility to develop analysis of optical characterization for new phantom studies in breast cancer diagnosis through bioimaging techniques. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23094390 |