Sub-attosecond-precision optical-waveform stability measurements using electro-optic sampling
The generation of laser pulses with controlled optical waveforms, and their measurement, lie at the heart of both time-domain and frequency-domain precision metrology. Here, we obtain mid-infrared waves via intra-pulse difference-frequency generation (IPDFG) driven by 16-femtosecond near-infrared pu...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-09, Vol.14 (1), p.20869-7, Article 20869 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The generation of laser pulses with controlled optical waveforms, and their measurement, lie at the heart of both time-domain and frequency-domain precision metrology. Here, we obtain mid-infrared waves via intra-pulse difference-frequency generation (IPDFG) driven by 16-femtosecond near-infrared pulses, and characterise the jitter of sub-cycle fractions of these waves relative to the gate pulses using electro-optic sampling (EOS). We demonstrate sub-attosecond temporal jitter at individual zero-crossings and sub-0.1%-level relative amplitude fluctuations in the 10-kHz–0.625-MHz band. Chirping the nearly-octave-spanning mid-infrared pulses uncovers wavelength-dependent attosecond-scale waveform jitter. Our study validates EOS as a broadband (both in the radio-frequency and the optical domains), highly sensitive measurement technique for the jitter dynamics of optical waveforms. This sensitivity reveals outstanding stability of the waveforms obtained via IPDFG and EOS, directly benefiting precision measurements including linear and nonlinear (infrared) field-resolved spectroscopy. Furthermore, these results form the basis toward EOS-based active waveform stabilisation and sub-attosecond multi-oscillator synchronisation/delay tracking. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-68848-z |