Satellite-Based Photonic Quantum Networks Are Small-World
Recent milestone experiments establishing satellite-to-ground quantum communication are paving the way for the development of the quantum Internet, a network interconnected by quantum channels. Here, we employ network theory to study the properties of the photonic networks that can be generated by s...
Gespeichert in:
Veröffentlicht in: | PRX quantum 2021-01, Vol.2 (1), p.010304, Article 010304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent milestone experiments establishing satellite-to-ground quantum communication are paving the way for the development of the quantum Internet, a network interconnected by quantum channels. Here, we employ network theory to study the properties of the photonic networks that can be generated by satellite-based quantum communication and compare them with those of their optical-fiber counterpart. We predict that satellites can generate small-world networks, implying that physically distant nodes are actually near from a network perspective. We also analyze the connectivity properties of the network and show, in particular, that they are robust against random failures. This positions satellite-based quantum communication as the most promising technology to distribute entanglement across large distances in quantum networks of growing size and complexity. |
---|---|
ISSN: | 2691-3399 2691-3399 |
DOI: | 10.1103/PRXQuantum.2.010304 |