Genomic Analysis Points to Multiple Genetic Mechanisms for Non-Transformable Campylobacter jejuni ST-50

and are well known for their natural competence, i.e., their capacity for the uptake of naked DNA with subsequent transformation. This study identifies non-transformable and strains from domestic animals and employs genomic analysis to investigate the strain genotypes and their associated genetic me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2024-02, Vol.12 (2), p.327
Hauptverfasser: Parker, Craig T, Villafuerte, David A, Miller, William G, Huynh, Steven, Chapman, Mary H, Hanafy, Zahra, Jackson, 3rd, James H, Miller, Morgan A, Kathariou, Sophia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:and are well known for their natural competence, i.e., their capacity for the uptake of naked DNA with subsequent transformation. This study identifies non-transformable and strains from domestic animals and employs genomic analysis to investigate the strain genotypes and their associated genetic mechanisms. The results reveal genetic associations leading to a non-transformable state, including functional DNase genes from bacteriophages and mutations within the -encoded DNA-uptake system, which impact the initial steps of the DNA uptake during natural transformation. Interestingly, all 38 tested ST-50 strains from the United States exhibit a high prevalence of non-transformability, and the strains harbor a variety of these genetic markers. This research emphasizes the role of these genetic markers in hindering the transfer of antimicrobial resistance (AMR) determinants, providing valuable insights into the genetic diversity of . As ST-50 is a major clone of jejuni globally, we additionally determined the prevalence of the genetic markers for non-transformability among ST-50 from different regions of the world, revealing distinct patterns of evolution and a strong selective pressure on the loss of competence in ST-50 strains, particularly in the agricultural environment in the United States. Our findings contribute to a comprehensive understanding of genetic exchange mechanisms within strains, and their implications for antimicrobial resistance dissemination and evolutionary pathways within specific lineages.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms12020327