Interindividual plasticity in metabolic and thermal tolerance traits from populations subjected to recent anthropogenic heating
To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural (small estuarine fish) populations from different thermal environments....
Gespeichert in:
Veröffentlicht in: | Royal Society open science 2021-07, Vol.8 (7), p.210440 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural
(small estuarine fish) populations from different thermal environments.
populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CT
) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CT
, the interindividual variation in acclimation response (log
ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12-28°C versus 28-12°C). CT
and WAM were greater at 28°C than 12°C, although WAM had a small change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CT
at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species. |
---|---|
ISSN: | 2054-5703 2054-5703 |
DOI: | 10.1098/rsos.210440 |