Local edge-enhanced active contour for accurate skin lesion border detection
Dermoscopy is one of the common and effective imaging techniques in diagnosis of skin cancer, especially for pigmented lesions. Accurate skin lesion border detection is the key to extract important dermoscopic features of the skin lesion. In current clinical settings, border delineation is performed...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2019-03, Vol.20 (Suppl 2), p.91-91, Article 91 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dermoscopy is one of the common and effective imaging techniques in diagnosis of skin cancer, especially for pigmented lesions. Accurate skin lesion border detection is the key to extract important dermoscopic features of the skin lesion. In current clinical settings, border delineation is performed manually by dermatologists. Operator based assessments lead to intra- and inter-observer variations due to its subjective nature. Moreover it is a tedious process. Because of aforementioned hurdles, the automation of lesion boundary detection in dermoscopic images is necessary. In this study, we address this problem by developing a novel skin lesion border detection method with a robust edge indicator function, which is based on a meshless method.
Our results are compared with the other image segmentation methods. Our skin lesion border detection algorithm outperforms other state-of-the-art methods. Based on dermatologist drawn ground truth skin lesion borders, the results indicate that our method generates reasonable boundaries than other prominent methods having Dice score of 0.886 ±0.094 and Jaccard score of 0.807 ±0.133.
We prove that smoothed particle hydrodynamic (SPH) kernels can be used as edge features in active contours segmentation and probability map can be employed to avoid the evolving contour from leaking into the object of interest. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-019-2625-8 |