Multiparameter Optimization of Thrust Vector Control with Transverse Injection of a Supersonic Underexpanded Gas Jet into a Convergent Divergent Nozzle
The optimal design of the thrust vector control system of solid rocket motors (SRMs) is discussed. The injection of a supersonic underexpanded gas jet into the diverging part of the rocket engine nozzle is considered, and multiparameter optimization of the geometric shape of the injection nozzle and...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-07, Vol.14 (14), p.4359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optimal design of the thrust vector control system of solid rocket motors (SRMs) is discussed. The injection of a supersonic underexpanded gas jet into the diverging part of the rocket engine nozzle is considered, and multiparameter optimization of the geometric shape of the injection nozzle and the parameters of jet injection into a supersonic flow is developed. The turbulent flow of viscous compressible gas in the main nozzle and injection system is simulated with the Reynolds-averaged Navier–Stokes (RANS) equations and shear stress transport (SST) turbulence model. An optimization procedure with the automatic generation of a block-structured mesh and conjugate gradient method is applied to find the optimal parameters of the problem of interest. Optimization parameters include the pressure ratio of the injected jet, the angle of inclination of the injection nozzle to the axis of the main nozzle, the distance of the injection nozzle from the throat of the main nozzle and the shape of the outlet section of the injection nozzle. The location of injection nozzle varies from 0.1 to 0.9 with respect to the length of the supersonic part of the nozzle; the angle of injection varies from 30 to 160 degrees; and the shape of the outlet section of the injection nozzle is an ellipse with an aspect ratio that varies from 0.1 to 1. The computed fluid flow in the combustion chamber is compared with experimental and computational results. The dependence of the thrust as a function of the injection parameters is obtained, and conclusions are made about the effects of the input parameters of the problem on the thrust coefficient. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14144359 |