Oscillatory and asymptotic behaviour of a neutral differential equation with oscillating coefficients

In this paper, we obtain sufficient conditions so that every solution of $$ \big(y(t)- \sum_{i=1}^n p_i(t) y(\delta_i(t))\big)'+\sum_{i=1}^m q_i(t) y(\sigma_i(t)) = f(t) $$ oscillates or tends to zero as $t \to \infty$. Here the coefficients $p_i(t), q_i(t)$ and the forcing term $f(t)$ are allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2008-01, Vol.2008 (19), p.1-10
Hauptverfasser: Dix, Julio G., Misra, Niyati, Padhy, Laxmi Narayan, Rath, Radhanath N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we obtain sufficient conditions so that every solution of $$ \big(y(t)- \sum_{i=1}^n p_i(t) y(\delta_i(t))\big)'+\sum_{i=1}^m q_i(t) y(\sigma_i(t)) = f(t) $$ oscillates or tends to zero as $t \to \infty$. Here the coefficients $p_i(t), q_i(t)$ and the forcing term $f(t)$ are allowed to oscillate; such oscillation condition in all coefficients is very rare in the literature. Furthermore, this paper provides an answer to the open problem 2.8.3 in [7, p. 57]. Suitable examples are included to illustrate our results.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2008.1.19