Oscillatory and asymptotic behaviour of a neutral differential equation with oscillating coefficients
In this paper, we obtain sufficient conditions so that every solution of $$ \big(y(t)- \sum_{i=1}^n p_i(t) y(\delta_i(t))\big)'+\sum_{i=1}^m q_i(t) y(\sigma_i(t)) = f(t) $$ oscillates or tends to zero as $t \to \infty$. Here the coefficients $p_i(t), q_i(t)$ and the forcing term $f(t)$ are allo...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2008-01, Vol.2008 (19), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we obtain sufficient conditions so that every solution of $$ \big(y(t)- \sum_{i=1}^n p_i(t) y(\delta_i(t))\big)'+\sum_{i=1}^m q_i(t) y(\sigma_i(t)) = f(t) $$ oscillates or tends to zero as $t \to \infty$. Here the coefficients $p_i(t), q_i(t)$ and the forcing term $f(t)$ are allowed to oscillate; such oscillation condition in all coefficients is very rare in the literature. Furthermore, this paper provides an answer to the open problem 2.8.3 in [7, p. 57]. Suitable examples are included to illustrate our results. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2008.1.19 |