On Iterative Learning Control for Remote Control Systems with Packet Losses

The problem of iterative learning control (ILC) is considered for a class of time-varying systems with random packet dropouts. It is assumed that an ILC scheme is implemented via a remote control system and that packet dropout occurs during the packet transmission between the ILC controller and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.279-287-131
Hauptverfasser: Wu, Jun, Xu, Jianxin, Xiong, Rong, Liu, Chunping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of iterative learning control (ILC) is considered for a class of time-varying systems with random packet dropouts. It is assumed that an ILC scheme is implemented via a remote control system and that packet dropout occurs during the packet transmission between the ILC controller and the actuator of remote plant. The packet dropout is viewed as a binary switching sequence which is subject to the Bernoulli distribution. In order to eliminate the effect of packet dropouts on the convergence property of output error, the hold-input scheme is adopted to compensate the packet dropout at the actuator. It is shown that the hold-input scheme with average ILC can achieve asymptotical convergence along the iteration axis for discrete time-varying linear system. Numerical examples are provided to show the effectiveness of the proposed method.
ISSN:1110-757X
1687-0042
DOI:10.1155/2013/245372