Integrals Involving Product of Polynomials and Daubechies Scale Functions

In this paper, we will introduce an algorithm for obtaining integrals of the form ∫x0 tm φ(t)dt, m ∈ N ∪ {0}, where φ is the scaling functions of Daubechies wavelet. In order to obtain these integrals in dyadic points for x’s, we have to solve a linear system. We will investigate, sparseness, well-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics interdisciplinary research (Online) 2021-12, Vol.6 (4), p.275-291
Hauptverfasser: Amjad Alipanah, Masoud Pendar, Kaveh Sadeghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we will introduce an algorithm for obtaining integrals of the form ∫x0 tm φ(t)dt, m ∈ N ∪ {0}, where φ is the scaling functions of Daubechies wavelet. In order to obtain these integrals in dyadic points for x’s, we have to solve a linear system. We will investigate, sparseness, well-conditioning and strictly diagonal dominant of matrices of these systems.
ISSN:2476-4965
DOI:10.22052/mir.2021.239849.1225