Integrals Involving Product of Polynomials and Daubechies Scale Functions
In this paper, we will introduce an algorithm for obtaining integrals of the form ∫x0 tm φ(t)dt, m ∈ N ∪ {0}, where φ is the scaling functions of Daubechies wavelet. In order to obtain these integrals in dyadic points for x’s, we have to solve a linear system. We will investigate, sparseness, well-c...
Gespeichert in:
Veröffentlicht in: | Mathematics interdisciplinary research (Online) 2021-12, Vol.6 (4), p.275-291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we will introduce an algorithm for obtaining integrals of the form ∫x0 tm φ(t)dt, m ∈ N ∪ {0}, where φ is the scaling functions of Daubechies wavelet. In order to obtain these integrals in dyadic points for x’s, we have to solve a linear system. We will investigate, sparseness, well-conditioning and strictly diagonal dominant of matrices of these systems. |
---|---|
ISSN: | 2476-4965 |
DOI: | 10.22052/mir.2021.239849.1225 |