Z-DNA formation in promoters conserved between human and mouse are associated with increased transcription reinitiation rates
A long-standing question concerns the role of Z-DNA in transcription. Here we use a deep learning approach DeepZ that predicts Z-flipons based on DNA sequence, structural properties of nucleotides and omics data. We examined Z-flipons that are conserved between human and mouse genomes after generati...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2024-08, Vol.14 (1), p.17786-18, Article 17786 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A long-standing question concerns the role of Z-DNA in transcription. Here we use a deep learning approach DeepZ that predicts Z-flipons based on DNA sequence, structural properties of nucleotides and omics data. We examined Z-flipons that are conserved between human and mouse genomes after generating whole-genome Z-flipon maps and then validated them by orthogonal approaches based on high resolution chemical mapping of Z-DNA and the transformer algorithm Z-DNABERT. For human and mouse, we revealed similar pattern of transcription factors, chromatin remodelers, and histone marks associated with conserved Z-flipons. We found significant enrichment of Z-flipons in alternative and bidirectional promoters associated with neurogenesis genes. We show that conserved Z-flipons are associated with increased experimentally determined transcription reinitiation rates compared to promoters without Z-flipons, but without affecting elongation or pausing. Our findings support a model where Z-flipons engage Transcription Factor E and impact phenotype by enabling the reset of preinitiation complexes when active, and the suppression of gene expression when engaged by repressive chromatin complexes. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-68439-y |