Study on the Catalytic Oxidation Modification Effect of Heavy Oil at Low Temperature under the Action of Different Ligand Ferric-Based Systems

This work explores the low-temperature catalytic oxidation of heavy oil (140 °C), resulting in structural changes with reduced heavy components and increased light components. The catalytic oxidation system consists of a catalyst, an oxidant, and a proton donor. Four different complexes of iron-base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2024-02, Vol.14 (2), p.154
Hauptverfasser: Tan, Dichen, Ma, Zhaofei, Chen, Lian, Mi, Yuanzhu, Yan, Xuemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work explores the low-temperature catalytic oxidation of heavy oil (140 °C), resulting in structural changes with reduced heavy components and increased light components. The catalytic oxidation system consists of a catalyst, an oxidant, and a proton donor. Four different complexes of iron-based catalysts were utilized: ferric oleate, iron naphthenate, EDTA–FeNa, and EDDHA–FeNa. Catalytic oxidation processes with these catalysts produced four types of oxygenated oil, which were then analyzed using group composition analysis and a viscosity test. The results show that EDDHA–FeNa is more favorable for the catalytic oxidation of heavy oil in a low-temperature environment, achieving a viscosity reduction rate of 78.57%. Furthermore, the catalytic performance of heavy oil oxidation was investigated using EDDHA–FeNa as catalyst under three conditions: the amount of catalyst, oxidant and reaction temperature. These findings may provide researchers valuable guidance and principles for the investigation and development of advanced catalytic viscosity reduction of heavy oil.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal14020154