New equations estimate evapotranspiration in Delta

The San Joaquin-Sacramento river delta plays a critical role in California water issues, but little information about potential evapotranspiration (ET) in the region is available for water resources planning and development. Simple equations, based on long-term weather data from Stockton and Lodi, h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:California agriculture (Berkeley, Calif.) Calif.), 1995-05, Vol.49 (3), p.19-21
Hauptverfasser: Orang, M.N. (University of California.), Grismer, M.E, Ashktorab, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The San Joaquin-Sacramento river delta plays a critical role in California water issues, but little information about potential evapotranspiration (ET) in the region is available for water resources planning and development. Simple equations, based on long-term weather data from Stockton and Lodi, have been developed for estimating monthly ET in the Delta. These equations can provide ET data until reliable weather stations are installed. Estimation of potential evapotranspiration (ETo) in a region is often essential to water resources planning and management. We developed a set of simple predictive equations for estimating ETo in the Delta based on temperature data collected from Lodi and Stockton. Although the particular equations apply to the Delta, the approach that we used should apply equally well to most semi-arid regions, especially those that have a Mediterranean climate. Our ETo equations yield values that closely match available data and those of an earlier short-term methodology developed by Pruitt at Davis. Thus the equations for ETo based only on temperature data may be used to estimate monthly Delta ETo over the long term (as early as 1921), as well as in the present, until weather stations are established in the Delta.
ISSN:0008-0845
2160-8091
DOI:10.3733/ca.v049n03p19