Designing out microplastic pollution released from textiles and apparel during laundering

The washing of synthetic materials has been named as the largest contributor of microplastic pollution to our oceans. With the consumption of petrochemical-based synthetic materials expected to grow, due to an increased demand, the release of microplastic fibres to our environments is expected to al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cambridge Prisms: Plastics 2024, Vol.2, Article e20
Hauptverfasser: Allen, Elisabeth, Henninger, Claudia E., Wood, Jane, Garforth, Arthur, Asuquo, Edidiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The washing of synthetic materials has been named as the largest contributor of microplastic pollution to our oceans. With the consumption of petrochemical-based synthetic materials expected to grow, due to an increased demand, the release of microplastic fibres to our environments is expected to also accelerate. To combat microplastic fibre release, this study explores source-directed interventions within the design and manufacturing process of textiles to reduce the amount of pollution released from the surface and the edges of the fabric structure. Using standardised wash tests and polyester fabric swatches that were created in-house with systematic structural adjustments, single jersey knit fabrics were shown to release over three times more microplastic pollution than twill woven fabric. This illustrates that increasing the tightness of a fabric could be implemented within the design of fabrics for environmental benefits. Additionally, the laser cutting technique reduced microplastic fibres released by over a third compared to scissor cutting and overlock serging, showing that the edge of the fabric is a significant source of microplastic pollution released during laundering. This research highlights the adaptable and innovative eco-design approaches to clothing production which is necessary to help the sector reach international sustainability targets and regulations.
ISSN:2755-094X
2755-094X
DOI:10.1017/plc.2024.20