Photogrammetry as a promising tool to unveil marine caves’ benthic assemblages
Traditionally, monitoring approaches to survey marine caves have been constrained by equipment limitations and strict safety protocols. Nowadays, the rise of new approaches opens new possibilities to describe these peculiar ecosystems. The current study aimed to explore the potential of Structure fr...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-05, Vol.13 (1), p.7587-7587, Article 7587 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditionally, monitoring approaches to survey marine caves have been constrained by equipment limitations and strict safety protocols. Nowadays, the rise of new approaches opens new possibilities to describe these peculiar ecosystems. The current study aimed to explore the potential of Structure from Motion (SfM) photogrammetry to assess the abundance and spatial distribution of the sessile benthic assemblages inside a semi-submerged marine cave. Additionally, since impacts of recent date mussel
Lithophaga lithophaga
illegal fishing were recorded, a special emphasis was paid to its distribution and densities. The results of SfM were compared with a more “traditional approach”, by simulating photo-quadrats deployments over the produced orthomosaics. A total of 22 sessile taxa were identified, with Porifera representing the dominant taxa within the cave, and
L. lithophaga
presenting a density of 88.3 holes/m
2
. SfM and photo-quadrats obtained comparable results regarding species richness, percentage cover of identified taxa and most of the seascape metrics, while, in terms of taxa density estimations, photo-quadrats highly overestimated their values. SfM resulted in a suitable non-invasive technique to record marine cave assemblages. Seascape indexes proved to be a comprehensive way to describe the spatial pattern of distribution of benthic organisms, establishing a useful baseline to assess future community shifts. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-34706-7 |