SUSD2 Proteolytic Cleavage Requires the GDPH Sequence and Inter-Fragment Disulfide Bonds for Surface Presentation of Galectin-1 on Breast Cancer Cells
Galectin-1 (Gal-1) is a 14 kDa protein that has been well characterized for promoting cancer metastasis and tumor immune evasion. By localizing to the cancer cell surface, Gal-1 induces T cell apoptosis through binding T cell surface receptors. The transmembrane protein, Sushi Domain Containing 2 (S...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-08, Vol.20 (15), p.3814 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Galectin-1 (Gal-1) is a 14 kDa protein that has been well characterized for promoting cancer metastasis and tumor immune evasion. By localizing to the cancer cell surface, Gal-1 induces T cell apoptosis through binding T cell surface receptors. The transmembrane protein, Sushi Domain Containing 2 (SUSD2), has been previously shown to be required for Gal-1 surface presentation in breast cancer cells. Western immunoblot analysis revealed that SUSD2 is cleaved into two fragments. However, the significance of this cleavage for Gal-1 surface localization has not been investigated. To define the location of cleavage, a mutagenesis analysis of SUSD2 was performed. Our studies demonstrated that SUSD2 is cleaved at its glycine-aspartic acid-proline-histidine (GDPH) amino acid sequence. Generation of a noncleavable SUSD2 mutant (GDPH∆-SUSD2) showed that SUSD2 cleavage was required for SUSD2 and Gal-1 plasma membrane localization. Noncleavable cysteine mutants were also unable to present Gal-1 at the cell surface, further demonstrating that SUSD2 cleavage is required for Gal-1 surface presentation. Treatment with the serine protease inhibitor, Pefabloc SC, inhibited SUSD2 cleavage in a dose dependent manner, suggesting that SUSD2 is cleaved by a serine protease. Therefore, identification and inhibition of this protease may provide a new therapeutic tool for inhibiting SUSD2 and Gal-1's combined tumorigenic function in breast cancer. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms20153814 |