Uncertainty in the Impact of the COVID-19 Pandemic on Air Quality in Hong Kong, China
Strict social distancing rules are being implemented to stop the spread of COVID-19 pandemic in many cities globally, causing a sudden and extreme change in the transport activities. This offers a unique opportunity to assess the effect of anthropogenic activities on air quality and provides a valua...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2020-09, Vol.11 (9), p.914 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Strict social distancing rules are being implemented to stop the spread of COVID-19 pandemic in many cities globally, causing a sudden and extreme change in the transport activities. This offers a unique opportunity to assess the effect of anthropogenic activities on air quality and provides a valuable reference to the policymakers in developing air quality control measures and projecting their effectiveness. In this study, we evaluated the effect of the COVID-19 lockdown on the roadside and ambient air quality in Hong Kong, China, by comparing the air quality monitoring data collected in January–April 2020 with those in 2017–2019. The results showed that the roadside and ambient NO2, PM10, PM2.5, CO and SO2 were generally reduced in 2020 when comparing with the historical data in 2017–2019, while O3 was increased. However, the reductions during COVID-19 period (i.e., February–April) were not always higher than that during pre-COVID-19 period (i.e., January). In addition, there were large seasonal variations in the monthly mean pollutant concentrations in every year. This study implies that one air pollution control measure may not generate obvious immediate improvements in the air quality monitoring data and its effectiveness should be evaluated carefully to eliminate the effect of seasonal variations. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos11090914 |