Non-volatile optoelectronic memory based on a photosensitive dielectric
Recently, the optoelectronic memory is capturing growing attention due to its integrated function of sense and memory as well as multilevel storage ability. Although tens of states have been reported in literature, there are still three obvious deficiencies in most of the optoelectronic memories: la...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-09, Vol.14 (1), p.5396-5396, Article 5396 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, the optoelectronic memory is capturing growing attention due to its integrated function of sense and memory as well as multilevel storage ability. Although tens of states have been reported in literature, there are still three obvious deficiencies in most of the optoelectronic memories: large programming voltage (>20 V), high optical power density (>1 mW cm
−2
), and poor compatibility originating from the over-reliance on channel materials. Here, we firstly propose an optoelectronic memory based on a new photosensitive dielectric (PSD) architecture. Data writing and erasing are realized by using an optical pulse to switch on the PSD. The unique design enables the memory to work with a programming voltage and optical power density as low as 4 V and 160 µW cm
−2
, respectively. Meanwhile, this device may be extended to different kinds of transistors for specific applications. Our discovery offers a brand-new direction for non-volatile optoelectronic memories with low energy consumption.
Designing high efficient optoelectronic memory remains a challenge. Here, the authors report a novel optoelectronic memory device based on a photosensitive dielectric that is an insulator in dark and a semiconductor under irradiation with multilevel storage ability, low energy consumption and good compatibility. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-40938-y |