The nearly complete assembly of the Cercis chinensis genome and Fabaceae phylogenomic studies provide insights into new gene evolution
Fabaceae is a large family of angiosperms with high biodiversity that contains a variety of economically important crops and model plants for the study of biological nitrogen fixation. Polyploidization events have been extensively studied in some Fabaceae plants, but the occurrence of new genes is s...
Gespeichert in:
Veröffentlicht in: | Plant communications 2023-01, Vol.4 (1), p.100422-100422, Article 100422 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fabaceae is a large family of angiosperms with high biodiversity that contains a variety of economically important crops and model plants for the study of biological nitrogen fixation. Polyploidization events have been extensively studied in some Fabaceae plants, but the occurrence of new genes is still concealed, owing to a lack of genomic information on certain species of the basal clade of Fabaceae. Cercis chinensis (Cercidoideae) is one such species; it diverged earliest from Fabaceae and is essential for phylogenomic studies and new gene predictions in Fabaceae. To facilitate genomic studies on Fabaceae, we performed genome sequencing of C. chinensis and obtained a 352.84 Mb genome, which was further assembled into seven pseudochromosomes with 30 612 predicted protein-coding genes. Compared with other legume genomes, that of C. chinensis exhibits no lineage-specific polyploidization event. Further phylogenomic analyses of 22 legumes and 11 other angiosperms revealed that many gene families are lineage specific before and after the diversification of Fabaceae. Among them, dozens of genes are candidates for new genes that have evolved from intergenic regions and are thus regarded as de novo-originated genes. They differ significantly from established genes in coding sequence length, exon number, guanine–cytosine content, and expression patterns among tissues. Functional analysis revealed that many new genes are related to asparagine metabolism. This study represents an important advance in understanding the evolutionary pattern of new genes in legumes and provides a valuable resource for plant phylogenomic studies.
This study reports a nearly complete genome assembly of Cercis chinensis (Cercidoideae) which is in the basal clade of Fabaceae, greatly promoting phylogenomic studies on legumes. Detailed genomic comparisons reveal that many gene families are lineage specific after species diversification, and new genes have been identified in various Fabaceae lineages, especially those with polyploidization. |
---|---|
ISSN: | 2590-3462 2590-3462 |
DOI: | 10.1016/j.xplc.2022.100422 |