Microstructure and mechanical properties of nano-WC reinforced AlSi10Mg fabricated by selective laser melting

In order to further enhance the performance of the AlSi10Mg parts fabricated by selective laser melting, the WC/AlSi10Mg composite with 0.1%WC(mass fraction) was obtained by mixing the nano-WC and AlSi10Mg in mixing machine, and the specimen block was fabricated by the selective laser melting machin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cai liao gong cheng = Journal of materials engineering 2020-03, Vol.48 (3), p.75-83
Hauptverfasser: Ye, Han, Huang, Jun-qiang, Zhang, Jian-qiang, Li, Cong-cong, Liu, Yong
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to further enhance the performance of the AlSi10Mg parts fabricated by selective laser melting, the WC/AlSi10Mg composite with 0.1%WC(mass fraction) was obtained by mixing the nano-WC and AlSi10Mg in mixing machine, and the specimen block was fabricated by the selective laser melting machine. By comparing the AlSi10Mg specimens fabricated by the same process, the effects of nano-WC on the microstructure formation and evolution of the microstructure and the mechanical properties of the microstructure were investigated. The results show that the WC/AlSi10Mg powder has good sphericity and the particle size distribution is concentrated in 20-60 μm. The WC/AlSi10Mg sample has the density of over 99% and hardness of about 158.89HV, which is 14.58% higher than that of the AlSi10Mg sample. The WC/AlSi10Mg samples grow uniformly and densely, with obvious molten pool lines. The inside of the crystal grain is α-Al matrix, and the boundary is a eutectic Si phase interposed with WC. The yield strength of the WC/A
ISSN:1001-4381
1001-4381
DOI:10.11868/j.issn.1001-4381.2018.001131