Sea Surface Current Estimation Using Airborne Circular Scanning SAR with a Medium Grazing Angle
Circular scanning synthetic aperture radar (SAR) is a novel imaging mode wherein the radar antenna rotates from 0 degrees to 360 degrees along the platform flight direction, providing us with a potentially effective technique to estimate the sea surface current velocity. In this paper, we propose a...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2018-02, Vol.10 (2), p.178 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circular scanning synthetic aperture radar (SAR) is a novel imaging mode wherein the radar antenna rotates from 0 degrees to 360 degrees along the platform flight direction, providing us with a potentially effective technique to estimate the sea surface current velocity. In this paper, we propose a novel method to estimate the sea surface current velocity utilizing the Doppler centroid shifts of different scan angles over 360 degrees after the airborne platform motion compensation. In this method, the Doppler centroid shifts of the sea clutter at different scan angles are first extracted, and the corresponding compensation errors caused by the azimuth pointing and the incidence angle of the radar beam are considered. Finally, the least squares (LS) technique is applied to estimate the along-track velocity component and the cross-track velocity component of the sea surface current. The effectiveness of the proposed method is verified by the real data recorded by an airborne circular scanning SAR system. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs10020178 |