Test Stand for a Motor Vehicle Powered by Different Fuels
This article discusses current testing methods for motor vehicle engines. Traction engines have so far been tested, for example, according to WLTP (Worldwide Harmonized Light Vehicle Test Procedure) driving tests, but due to the “VW—gate” incident, these are now to be supplemented by RDE (Real Drivi...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-10, Vol.12 (20), p.10683 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article discusses current testing methods for motor vehicle engines. Traction engines have so far been tested, for example, according to WLTP (Worldwide Harmonized Light Vehicle Test Procedure) driving tests, but due to the “VW—gate” incident, these are now to be supplemented by RDE (Real Driving Emissions) tests, conducted under real road conditions. The analyses of the state of knowledge and the directions of research to date unequivocally indicate the need for the construction of a stand that allows: testing of a complete vehicle admitted to traffic; testing of a motor vehicle with the possibility of simulating real operating conditions; load setting with the possibility of its regulation; feeding the engine with various fuels; modification of the software of controllers having a direct impact on the control strategies of the engine; transmission and traction control system; reading, recording and analysis of the parameters of the operation of control systems in real time; detailed recording and analysis of the combustion process occurring directly in the combustion chamber; and the measurement of emitted toxic substances. On a bench with the above features, tests were carried out on a diesel motor vehicle, which were based on recording changes in the parameters of the combustion and injection process. The tests were conducted under static and dynamic conditions. Tests under static conditions were conducted on a chassis dynamometer. They consisted of indicating the engine for different fuel dose control maps. The vehicle equipped with the test engine was driven at a constant speed on the chassis dynamometer and loaded with a drag force of 130 Nm. Tests under dynamic conditions were conducted under real traffic conditions. They were limited to the presentation of results under static conditions. The main results of the tests are given in the conclusion and include a general summary. In particular, the presented results of the diesel tests demonstrate an attempt to adapt the engine to co-power with hydrogen. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app122010683 |