Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of α-pinene and β-pinene

Atmospheric organic nitrate (ON) is thought to play a crucial role in the formation potential of ozone and aerosol, which are the leading air pollutants of concern across the world. Limited fundamental knowledge and understanding of the life cycles of ON currently hinder the ability to quantitativel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2019-10, Vol.19 (19), p.12749-12766
Hauptverfasser: Takeuchi, Masayuki, Ng, Nga L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atmospheric organic nitrate (ON) is thought to play a crucial role in the formation potential of ozone and aerosol, which are the leading air pollutants of concern across the world. Limited fundamental knowledge and understanding of the life cycles of ON currently hinder the ability to quantitatively assess its impacts on the formation of these pollutants. Although hydrolysis is currently considered an important loss mechanism of ON based on prior field measurement studies, this process for atmospherically relevant ON has not been well constrained by fundamental laboratory studies. In this comprehensive study, we investigated the chemical composition and hydrolysis process of particulate ON (pON) formed from the oxidation of α-pinene and β-pinene by hydroxyl (OH⚫) and nitrate radicals (NO3⚫). For pON that undergoes hydrolysis, the hydrolysis lifetime is determined to be no more than 30 min for all systems explored. This is significantly shorter than those reported in previous chamber studies (i.e., 3–6 h) but is consistent with the reported lifetime from bulk solution measurement studies (i.e., 0.02–8.8 h). The discrepancy appears to stem from the choice of proxy used to estimate the hydrolysis lifetime. The measured hydrolyzable fractions of pON (FH) in the α-pinene + OH⚫, β-pinene + OH⚫, α-pinene + NO3⚫, and β-pinene + NO3⚫ systems are 23 %–32 %, 27 %–34 %, 9 %–17 %, and 9 %–15 %, respectively. While a very low FH for the NO3⚫ oxidation system is expected based on prior studies, FH for the OH⚫ oxidation system is surprisingly lower than predicted in past studies. Overall, the hydrolysis lifetime as well as FH obtained in this study serve as experimentally constrained parameters that are required in regional and global chemical transport models to accurately evaluate the impacts of ON on nitrogen budget and formation of ozone and aerosol.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-19-12749-2019