Design Formulas for Broadband Concentric Circular-Loops Antennas
This paper presents a simple formulas for designing broadband concentric circular-loops antennas (CCLAs). The loop dimensions for widest bandwidth are expressented in terms of the resonance frequency of the driven loop. The analysis addresses both cases CCLAs with and without ground planes. The pres...
Gespeichert in:
Veröffentlicht in: | Advanced electromagnetics 2015-01, Vol.4 (1), p.45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a simple formulas for designing broadband concentric circular-loops antennas (CCLAs). The loop dimensions for widest bandwidth are expressented in terms of the resonance frequency of the driven loop. The analysis addresses both cases CCLAs with and without ground planes. The presented formulas are employed to design multiple CCLAs. For example, a 3-elements CCLA of a maximum radius of 6.34 cm can be designed to operate with a voltage standing wave ratio (VSWR) < 2 over a frequencies band of a fractional bandwidth of 16.9% with a minimum directivity of 3.9 dB. Addionationally, a 4-elements CCLA of maximum radius of 15 cm can be design to operate in the frequency band extending from 825 MHz to 991 MHz (fractional bandwidth of 18.3%) with a VSWR < 2 and directivity higher than 5.2 dB over the entire band. Furthermore, the analysis shows that a 3-elements CCLA backed with a conducting ground plane improves the fractional bandwidth to 19.6% and directivity to 9.15 dB over the band of interest. The analytical results on designed antennas are validated with simulation results obtained by using the AN-SOF antenna simulation software. An excellent agreement is observed between analytical and AN-SOF simulations results. |
---|---|
ISSN: | 2119-0275 2119-0275 |
DOI: | 10.7716/aem.v4i1.277 |