Monotone subsequence via ultrapower
An ultraproduct can be a helpful organizing principle in presenting solutions of problems at many levels, as argued by Terence Tao. We apply it here to the solution of a calculus problem: every infinite sequence has a monotone infinite subsequence, and give other applications.
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2018-03, Vol.16 (1), p.149-153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An ultraproduct can be a helpful organizing principle in presenting solutions of problems at many levels, as argued by Terence Tao. We apply it here to the solution of a calculus problem: every infinite sequence has a monotone infinite subsequence, and give other applications. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2018-0015 |