Highly flexible and transparent colorless polyimide substrate sandwiched between plasma polymerized fluorocarbon and InGaTiO for high performance flexible perovskite solar cells

We integrated transparent antireflective coatings and transparent electrodes onto flexible colorless polyimide (CPI) substrates to fabricate high-performance flexible perovskite solar cells. Multifunctional PPFC/CPI/IGTO substrates were fabricated by sputtering the optimal plasma-polymerized fluoroc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science and technology of advanced materials 2024-12, Vol.25 (1), p.2373041
Hauptverfasser: Kim, Su-Kyung, Cho, Eun-Mi, Seok, Hae-Jun, Kim, Young-Yun, Choi, Dong-Hyeok, Lee, Sang-Jin, Jeon, Nam Joong, Kim, Han-Ki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We integrated transparent antireflective coatings and transparent electrodes onto flexible colorless polyimide (CPI) substrates to fabricate high-performance flexible perovskite solar cells. Multifunctional PPFC/CPI/IGTO substrates were fabricated by sputtering the optimal plasma-polymerized fluorocarbon (PPFC) antireflective coating and InGaTiO (IGTO) electrode films on both sides of the CPI substrate. By applying PPFC with a low refractive index (1.38) as an antireflective coating, the transparency of the PPFC/CPI/IGTO substrate increased by an additional 1.2%. In addition, owing to the amorphous characteristics of the PPFC and IGTO layers, the PPFC/CPI/IGTO substrate showed constant sheet resistance and transmittance change even after 10,000 cycles during the bending tests. The flexible perovskite solar cells, fabricated on the PPFC/CPI/IGTO substrate, exhibited an increase in current density of 1.48 mA/cm after the deposition of the PPFC antireflective coating. These results confirmed that the PPFC/CPI/IGTO substrate was durable against high-temperature treatment, flexible, and exhibited excellent electrical characteristics. This enhanced the efficiency and durability of the flexible perovskite solar cells. Moreover, the hydrophobic PPFC layer allowed the self-cleaning of inflexible perovskite solar cells. Given these attributes, the PPFC/CPI/IGTO structure has been recognized as a good choice for multifunctional substrates of flexible perovskite solar cells, presenting the potential for enhancing performance.
ISSN:1468-6996
1878-5514
DOI:10.1080/14686996.2024.2373041