On the $ k $-error linear complexity of binary sequences of periods $ p^n $ from new cyclotomy
In this paper, we study the $ k $-error linear complexity of binary sequences with periods $ p^n $, which are derived from new generalized cyclotomic classes modulo a power of an odd prime $ p $. We establish a recursive relation and then estimate the $ k $-error linear complexity of the binary sequ...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2022-02, Vol.7 (5), p.7997-8011 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the $ k $-error linear complexity of binary sequences with periods $ p^n $, which are derived from new generalized cyclotomic classes modulo a power of an odd prime $ p $. We establish a recursive relation and then estimate the $ k $-error linear complexity of the binary sequences with periods $ p^n $, the results extend the case $ p^2 $ that has been studied in an earlier work of Wu et al. at 2019. Our results show that the $ k $-error linear complexity of these sequences does not decrease dramatically for $ k < (p^{n}-p^{n-1})/2 $. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022446 |