On the $ k $-error linear complexity of binary sequences of periods $ p^n $ from new cyclotomy

In this paper, we study the $ k $-error linear complexity of binary sequences with periods $ p^n $, which are derived from new generalized cyclotomic classes modulo a power of an odd prime $ p $. We establish a recursive relation and then estimate the $ k $-error linear complexity of the binary sequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022-02, Vol.7 (5), p.7997-8011
Hauptverfasser: Edemskiy, Vladimir, Wu, Chenhuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the $ k $-error linear complexity of binary sequences with periods $ p^n $, which are derived from new generalized cyclotomic classes modulo a power of an odd prime $ p $. We establish a recursive relation and then estimate the $ k $-error linear complexity of the binary sequences with periods $ p^n $, the results extend the case $ p^2 $ that has been studied in an earlier work of Wu et al. at 2019. Our results show that the $ k $-error linear complexity of these sequences does not decrease dramatically for $ k < (p^{n}-p^{n-1})/2 $.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022446