Unveiling critical ADHD biomarkers in limbic system and cerebellum using a binary hypothesis testing approach

Attention deficit hyperactivity disorder (ADHD) is a common childhood developmental disorder. In recent years, pattern recognition methods have been increasingly applied to neuroimaging studies of ADHD. However, these methods often suffer from limited accuracy and interpretability, impeding their co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences and engineering : MBE 2024-04, Vol.21 (4), p.5803-5825
Hauptverfasser: Chen, Ying, Wang, Lele, Li, Zhixin, Tang, Yibin, Huan, Zhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Attention deficit hyperactivity disorder (ADHD) is a common childhood developmental disorder. In recent years, pattern recognition methods have been increasingly applied to neuroimaging studies of ADHD. However, these methods often suffer from limited accuracy and interpretability, impeding their contribution to the identification of ADHD-related biomarkers. To address these limitations, we applied the amplitude of low-frequency fluctuation (ALFF) results for the limbic system and cerebellar network as input data and conducted a binary hypothesis testing framework for ADHD biomarker detection. Our study on the ADHD-200 dataset at multiple sites resulted in an average classification accuracy of 93%, indicating strong discriminative power of the input brain regions between the ADHD and control groups. Moreover, our approach identified critical brain regions, including the thalamus, hippocampal gyrus, and cerebellum Crus 2, as biomarkers. Overall, this investigation uncovered potential ADHD biomarkers in the limbic system and cerebellar network through the use of ALFF realizing highly credible results, which can provide new insights for ADHD diagnosis and treatment.
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2024256