Identification and integrative analysis of ACLY and related gene panels associated with immune microenvironment reveal prognostic significance in hepatocellular carcinoma

Cumulating evidence reveals the key role of aberrant lipogenesis and immunogenomic features in hepatocellular carcinoma (HCC). However, there are still obstacles in our understanding of the complicated interaction between metabolic reprogramming and tumor immune microenvironment. We compared metabol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer Cell International 2021-08, Vol.21 (1), p.409-20, Article 409
Hauptverfasser: Xu, Yunfeng, Zhang, Ze, Xu, Da, Yang, Xin, Zhou, Lina, Zhu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cumulating evidence reveals the key role of aberrant lipogenesis and immunogenomic features in hepatocellular carcinoma (HCC). However, there are still obstacles in our understanding of the complicated interaction between metabolic reprogramming and tumor immune microenvironment. We compared metabolomic, transcriptomic and immunogenomic characteristics of portal vein tumor thrombosis (PVTT) and primary tumor to seek valuable markers. Human HCC samples with PVTT (n  =  28) was analyzed through ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Transcript levels of mRNA in two cohorts from published database GEO (n  =  60) and TCGA (n  =  411) were downloaded to explore differentially expressed genes and functional enriched gene set. Evaluation of immune infiltration was estimated and validated from transcriptomic data in both cohorts through six immune deconvolution algorithms and in a high-resolution mode (CIBERSORTx). Survival analysis (Kaplan-Meier and multivariable Cox regression model) was performed to examine prognostic value of ACLY, related immune checkpoints and immune infiltration levels from TCGA cohort. LASSO regression was further conducted to determine a gene panel to further predict survival outcomes associated with ACLY. We identified a novel signature, ATP citrate lyase, through transcriptomic and metabolomic approaches. We demonstrated that the metabolism adaptations in both fatty acid and cholesterol biosynthesis triggered by ACLY oncogenic activation. We illustrated the crucial function of ACLY in lipogenesis and its potential interaction with immune microenvironment. CD276, a promising target in immune checkpoint blockade, showed correlation to ACLY and differential expression in ACLY risk classification. Combination of ACLY, CD276 and immune infiltration level and a novel ACLY-associated panel from a predictive model retrieved from published database validated the prognostic value to risk stratification in patients with HCC.ACLY blockade to counteract metabolic activation and immunosuppressive status of the tumor microenvironment highlighted attractive prospect for translational application. We investigated ACLY and its indispensable role in metabolism, immune function and a prognostic gene panel in HCC. We anticipate that the multifaced role of ACLY may reveal the potential value for mechanistic research and combinational therapy, suggesting that the combination blockade of ACLY and immune checkpoints may work
ISSN:1475-2867
1475-2867
DOI:10.1186/s12935-021-02108-2