Scattering of conformal higher spin fields

A bstract We develop a formalism for describing the most general notion of tree-level scattering amplitudes in 4d conformal higher spin theory. As conformal higher spin fields obey higher-derivative equations of motion, there are many distinct on-shell external states which may contribute to their s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2018-07, Vol.2018 (7), p.1-39, Article 16
Hauptverfasser: Adamo, Tim, Nakach, Simon, Tseytlin, Arkady A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We develop a formalism for describing the most general notion of tree-level scattering amplitudes in 4d conformal higher spin theory. As conformal higher spin fields obey higher-derivative equations of motion, there are many distinct on-shell external states which may contribute to their scattering, some of which grow polynomially with time, leading to ill-defined amplitudes. We characterize the set of admissible scattering states which produce finite tree amplitudes, noting that there are more such states than just standard massless higher spins obeying two-derivative equations of motion. We use conformal gravity as a prime example, where the set of scattering states includes the usual Einstein graviton and a ‘ghost’ massless spin 1 particle. An extension of the usual spinor helicity formalism allows us to encode these scattering states efficiently in terms of ‘twistor-spinors’. This leads to compact momentum space expressions for all finite tree-level 3-point amplitudes of conformal higher spin theory. While some of these 3-point amplitudes vanish (including all those with only standard two-derivative higher spin external states), there are many others which are non-vanishing. We also comment on the generalization to scattering of conformal higher spins in AdS 4 .
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2018)016