Multi-species single-cell transcriptomic analysis of ocular compartment regulons

The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-09, Vol.12 (1), p.5675-5675, Article 5675
Hauptverfasser: Gautam, Pradeep, Hamashima, Kiyofumi, Chen, Ying, Zeng, Yingying, Makovoz, Bar, Parikh, Bhav Harshad, Lee, Hsin Yee, Lau, Katherine Anne, Su, Xinyi, Wong, Raymond C. B., Chan, Woon-Khiong, Li, Hu, Blenkinsop, Timothy A., Loh, Yuin-Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in the retina. In addition to that, we identify putative adult stem cells present in the iris tissue. We also create a disease map of genes involved in eye disorders across compartments of the eye. Furthermore, we probe the regulons of different cell populations, which include transcription factors and receptor-ligand interactions and reveal unique directional signalling between ocular cell types. In addition, we study conservation of regulons across vertebrates and zebrafish to identify common core factors. Here, we show perturbation of KLF7 gene expression during retinal ganglion cells differentiation and conclude that it plays a significant role in the maturation of retinal ganglion cells. A comprehensive analysis of the ocular networks among various tissues is necessary to understand eye physiology in health and disease. Here the authors present a multi-species single-cell transcriptomic atlas consisting of cells of the cornea, iris, ciliary body, neural retina, retinal pigmented epithelium, and choroid.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25968-8