Synthesis of new bis(dimethylamino)benzophenone hydrazone for diabetic management: In-vitro and in-silico approach

Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Bis(dimethylamino)benzophenone derivatives 1–27 were synthesized from bis(dimethylamino)benzophenone via two-step reaction. Different spectroscopic techniques, including EI-MS and 1H NMR, were empl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-01, Vol.10 (1), p.e23323-e23323, Article e23323
Hauptverfasser: Khan, Momin, Ahad, Ghulam, Alam, Aftab, Ullah, Saeed, Khan, Ajmal, Kanwal, Salar, Uzma, Wadood, Abdul, Ajmal, Amar, Khan, Khalid Mohammed, Perveen, Shahnaz, Uddin, Jalal, Al-Harrasi, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Bis(dimethylamino)benzophenone derivatives 1–27 were synthesized from bis(dimethylamino)benzophenone via two-step reaction. Different spectroscopic techniques, including EI-MS and 1H NMR, were employed to characterize all synthetic derivatives. The elemental composition of synthetic compounds was confirmed by elemental analysis and results were found in agreement with the calculated values. The synthetic compounds 1–27 were evaluated for α-glucosidase inhibitory activity, except five compounds all derivatives showed good to moderate inhibitory potential in the range of IC50 = 0.28 ± 2.65 - 0.94 ± 2.20 μM. Among them, the most active compounds were 5, 8, 9, and 12 with IC50 values of 0.29 ± 4.63, 0.29 ± 0.93, 0.28 ± 3.65, and 0.28 ± 2.65, respectively. Furthermore, all these compounds were found to be non-toxic on human fibroblast cell lines (BJ cell lines). Kinetics study of compounds 8 and 9 revealed competitive type of inhibition with Ki values 2.79 ± 0.011 and 3.64 ± 0.012 μM, respectively. The binding interactions of synthetic compounds were also confirmed through molecular docking studies that indicated that compounds fit well in the active site of enzyme. Furthermore, a total of 30ns MD simulation was carried out for the most potent complexes of the series. The molecular dynamics study revealed that compound-8 and compound-12 were stable during the MD simulation.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e23323